報(bào)告承辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
報(bào)告題目:Wolbachia dynamics in mosquitoes with incomplete CI and imperfect maternal transmission by a DDE system
報(bào)告人姓名:Zou Xingfu(鄒幸福)
報(bào)告人所在單位:加拿大西安大略大學(xué)
報(bào)告人職稱:教授、博士生導(dǎo)師
報(bào)告時(shí)間:2025年5月8日星期四下午4:00-6:00
報(bào)告地點(diǎn):理科樓A419
報(bào)告人簡(jiǎn)介:1983和1989年在中山大學(xué)數(shù)學(xué)系和湖南大學(xué)數(shù)學(xué)系分別獲學(xué)士和碩士學(xué)位。1993-1997年就讀于加拿大約克大學(xué)并獲博士學(xué)位,繼而在加拿大維多利亞大學(xué)和美國(guó)喬治亞理工學(xué)院動(dòng)力系統(tǒng)與非線性研究中心做博士后。1999.1-2004.1在加拿大紐芬蘭紀(jì)念大學(xué)先后任助理教授和副教授(終身教職),2004年開始在加拿大西安大略大學(xué)應(yīng)用數(shù)學(xué)系任正教授(終身教職)。鄒幸福教授是北美地區(qū)在微分方程與動(dòng)力系統(tǒng)及應(yīng)用的研究領(lǐng)域中的最活躍的學(xué)者之一。近年來主要從事偏泛函微分方程、應(yīng)用動(dòng)力系統(tǒng)、生物生態(tài)模型和神經(jīng)網(wǎng)絡(luò)模型的動(dòng)力性態(tài)特性研究,取得了一系列有影響的成果,在J. Diff. Eqns.、SIAM J. Appl. Math.、SIAM J. Math. Anal.等著名雜志發(fā)表有影響的研究論文100余篇,擔(dān)任Applicable Analysis、Journal of Computational and Applied Mathematics、Communications on Pure and Applied Analysis等SCI收錄雜志的編委,曾獲加拿大國(guó)家自然科學(xué)和工程基金博士后獎(jiǎng),Petro-Canada青年研究創(chuàng)新獎(jiǎng),安大略省長(zhǎng)杰出研究獎(jiǎng)。
報(bào)告摘要:In this talk, I will present a delay differential equation model to describe Wolbachia infection dynamics in mosquitoes in which the key factor of cytoplasmic incompatibility (CI) is incorporated in a more natural way than those in the literature. Analysis of this the model, reveal some information on the impact of four important parameters: the competition capabilities of the wild mosquitoes and infected mosquitoes, the maternal transmission level and the CI level. The analytic results show that there are ranges of parameters that support competition exclusion principle, and there are also ranges of parameters that allow co-persistence for both wild and infected mosquitoes. These ranges account for the scenarios of failure of invasion, invasion and suppressing the wild mosquitoes, and invasion and replacing the wild mosquitoes. I will also discuss some possible future research projects both in mathematics and in modelling.